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Abstract
Bias in the training data can jeopardize fairness
and explainability of deep neural network predic-
tion on test data. We propose a novel bias-tailored
data augmentation approach, Counterfactual Inter-
polation Augmentation (CIA), attempting to debias
the training data by d-separating the spurious cor-
relation between the target variable and the sensi-
tive attribute. CIA generates counterfactual inter-
polations along a path simulating the distribution
transitions between the input and its counterfactual
example. CIA as a pre-processing approach en-
joys two advantages: First, it couples with either
plain training or debiasing training to markedly in-
crease fairness over the sensitive attribute. Second,
it enhances the explainability of deep neural net-
works by generating attribution maps via integrat-
ing counterfactual gradients. We demonstrate the
superior performance of the CIA-trained deep neu-
ral network models using qualitative and quantita-
tive experimental results. Our code is available at:
https://github.com/qiangyao1988/CIA

1 Introduction
Deep neural network (DNN) trained with biased data is
known to learn and exploit the spurious correlation between
the target variable and the sensitive attribute (e.g., color, gen-
der, and race) as a shortcut for prediction [Kim et al., 2019;
Geirhos et al., 2020]. However, the spurious correlation may
only reflect dataset-specific biases or sampling artifacts rather
than the causal mechanism between the intended feature and
target variable. As a result, the DNN’s output may be bi-
ased against the protected groups defined by the sensitive at-
tribute. For example, a facial recognition model performs
poorly for female with darker skin compared to other gen-
der/race groups [Buolamwini and Gebru, 2018]. Developing
bias mitigation techniques to alleviate the adverse effect has
attracted increasing attention in recent years.

Extensive approaches have been developed to mitigate bias
in DNN’s prediction. Many methods attempt to remove
sensitive information from the learned features during the
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training process [Madras et al., 2018; Kim et al., 2019;
Li et al., 2020]. However, the adversarial training and dis-
entangled representation learning approaches are limited be-
cause they potentially remove some useful information re-
lated to the sensitive attribute, thus compromising the model
performance on the target task. [Kim et al., 2021] aim to
debias and increase the quality of the training set via data
augmentation. Despite its initial success, they augment data
through linearly interpolating the latent features from the dis-
criminative models, limiting their capability to generate a set
of legitimate and manifold data augmentations. Clearly, gen-
erative models that learn the distribution of features provide
a promising solution.

While many existing approaches ensure fairness, explain-
ability arises as another salient challenge. Besides select-
ing appropriate metrics (e.g., demographic parity, equality-
of-odds) for fairness evaluation, researchers attempt to ap-
ply model explanation techniques to help understand whether
a DNN model makes fair decisions [Qiang et al., 2020;
Pan et al., 2020; Tong and Kagal, 2020]. Among others, fea-
ture attribution methods (e.g., IG [Sundararajan et al., 2017])
calculating the attribution of each input feature as its impor-
tance have gained great success. Nevertheless, the computing
process may be misled by the sensitive attribute, resulting in
incorrect explanations as shown in Figure 1(d), due to the ar-
bitrary choices of the baseline and integral path.

To address the above problems, we design a bias-tailored
counterfactual interpolation augmentation (CIA) approach to
1) mitigate bias in the training set, and 2) develop fair and
explainable DNN models using the counterfactual interpola-
tions generated from CIA. Our unified approach is illustrated
in Figure 1. Here we mitigate bias in the training set through
the lens of counterfactual fairness [Kusner et al., 2017; Pfohl
et al., 2019]. The counterfactual causal inference is modeled
using a conditional variational auto-encoder (CVAE) [Sohn et
al., 2015], which generates the counterfactual interpolations
by interpolating the sensitive attribute along a constructed
path simulating the distribution transitions between the sen-
sitive groups. We then inject the bias-tailored counterfactual
interpolations into the biased training set to intervene the spu-
rious causal effect. Therefore, DNN models trained with CIA
tend to learn the features that are truly causal to the target
variables, resulting in fair outputs.

Similar to the attribution methods, the counterfactual ex-



Figure 1: An illustrative example. (a) The target variable (shape) is spuriously correlated with the sensitive attribute (color) in the biased
training set. A biased classifier undesirably learns and leverages the spurious correlations for prediction. (b) Our CIA generates bias-tailored
counterfactual interpolation augmentation to mitigate bias in the training set and to enhance fair explanation. (c) CIA enables training a fair
classifier to learn discriminative features for shape classification. (d) In the first row, CIA generates a meaningful explanation for classifying
the target (shape). In the second row, a baseline interpolation generates explanation of the target (shape) confounded by the sensitive attribute
(color). Best viewed in color.

planation can give powerful insights into what is important
to the underlying decision process leveraging the counterfac-
tual examples, which are in contrast with the original input
by making some artificial modifications on the features of
interest [Kusner et al., 2017; Wachter et al., 2017]. Here
we develop a new DNN model explanation method that in-
tegrates gradients along the interpolated path simulating the
distribution transitions from the counterfactual example to the
input. Since the gradient integration focuses on the intended
attributes and does not get distracted by the sensitive attribute,
our method can generate more meaningful explanations by
dissolving the negative impacts from the sensitive attribute.

We summarize our contributions as follows:

• First, we propose CIA, a novel data augmentation strat-
egy to increase DNN fairness via de-correlating the tar-
get from the sensitive attribute in training data.

• Second, we design an DNN model explanation method
that leverages the generated counterfactual interpola-
tions from CIA for gradients integration. We demon-
strate this work as a unified approach to enhance both
fairness and explainability of the DNN.

• Third, we experimentally show that CIA minimizes
the detrimental effects of bias using two benchmark
datasets. The experiment results demonstrate several
quantitative and qualitative benefits of our DNN model
explanation approach.

2 Related Works
2.1 Debiasing Learning
Fairness has attracted increasing attention since DNN of-
ten exhibits bias towards/against certain protected groups,
e.g., as defined by sensitive attributes, such as gender and
race [Madras et al., 2018]. The existing fairness-aware pre-
diction methods can be categorized into pre-processing, in-
processing, and post-processing approaches.

Pre-processing. Pre-processing approaches attempt to de-
bias and increase the quality of a training set through data
augmentation. [Zhang and Sang, 2020] propose to balance
data distribution for visual debiasing by adding supplemen-
tary adversarial examples. This method relies on selecting
adversarial attacks and an auxiliary task classifier to generate
adversarial examples. [Kim et al., 2021] first divide the train-
ing images into bias-guiding and bias-contrary samples based
on the assumption that the bias attributes are easy-to-learn.
Then, they generate the bias-swapped image augmentations
containing the bias attributes from the bias-contrary images
while preserving bias-irrelevant ones in the bias-guiding im-
ages. [Chuang and Mroueh, 2021] present fair mixup as a
new data augmentation method to generate interpolated sam-
ples between the sensitive groups. Fairness is achieved by
regularizing the trained DNN model on the path of the gener-
ated interpolations with fairness constraints. However, their
approach only performs data augmentation by leveraging the
latent features from the discriminative models limiting their
ability to generate a set of legitimate and manifold instances.
Differently, generative models are designed to characterize
the probability density of observations in the latent space,
leading to a better description of the training dataset. Con-
sequently, they can generate the manifold data augmentations
via sampling from the learned latent feature distributions.
In-processing. In-processing approaches aim to remove
the sensitive information from the learned features during
the training process. Some approaches enforce constraints
for specific fairness metrics (e.g., demographic parity and
equality-of-odds) via an auxiliary regularization term, ei-
ther adding constraints to disentangle the association between
model predictions and sensitive attributes [Nam et al., 2020]
or updating objective function to minimize the performance
difference between certain groups [Sagawa et al., 2019]. The
problem is that the models may behave differently at infer-
ence time even though such fairness constraints are satisfied
during training. Adversarial training is enabled through the
min-max objective: maximizing the classifier’s ability to pre-



dict the target variable while minimizing the adversary’s ca-
pability to predict the sensitive attribute [Madras et al., 2018;
Kim et al., 2019]. Nevertheless, this process can compromise
the model performance on the main classification task. [Hong
and Yang, 2021] design a novel fairness constraint loss, Bias-
Contrastive, utilizing the constractive learning to encourage
the proximity between the training examples with the same
target class but different bias class in the feature space. Per-
formance of this constractive learning method heavily relies
on the choice of positive and negative samples.

Post-processing. Post-processing approaches calibrate or
modify the predictions according to the sensitive attribute at
inference time [Hardt et al., 2016]. These methods require
access to the sensitive attribute, they are not feasible for real-
world applications due to the salient security and privacy con-
cerns.

Here we advocate for the pre-processing approach, which
is agnostic to the choice of fairness algorithms and DNN
model architectures. Moreover, it generates debiased data
that can be used for training DNNs to further increase their
fairness. Our training data debiasing strategy falls under
the umbrella of causal fairness [Kusner et al., 2017] aiming
to enforce the model to concentrate more on task-relevant
causal features while getting rid of the superficial correla-
tions. Moreover, our strategy is expected to enhance the qual-
ity of the existing model explanation as described below.

2.2 Integrated Gradients and Variants
Gradient-based feature attribution techniques interpret DNN
in terms of the gradient, i.e., the partial derivative of the out-
put with respect to the input, as a sensitivity measurement of
the network for each input element [Sundararajan et al., 2017;
Erion et al., 2021]. Integrated Gradients (IG) [Sundararajan
et al., 2017] applies integrated gradients along a linear path
from a baseline to the input avoiding the well-known prob-
lem of gradient saturation, i.e., the gradients may not reflect
feature importance [Miglani et al., 2020]. The formulation of
IG is:

IGi(x) = (xi − x′i) ·
∫ 1

0

∂F (x′i + α · (xi − x′i))

∂xi
dα, (1)

where x is the input, x′ is the baseline representing a missing
or neutral input (e.g., a black or random noise image). F (·)
denotes the prediction output. The linear integral path is de-
noted as: γ(α) = x′ + α × (x − x′), where α ∈ [0, 1]. To
compute this integral efficiently, authors propose a Riemann
summation approximation.

Recent studies demonstrate that the choice of baseline
heavily impacts the quality of feature attributions [Haug et
al., 2021]. [Sturmfels et al., 2020] present several alterna-
tives: (1) Maximum distance baseline; (2) Blurred baseline
[Xu et al., 2020]; (3) Gaussian baseline; and (4) Uniform
baseline. [Izzo et al., 2020] propose the neutral baseline ly-
ing on the decision boundary of the predictive model. More
recently, [Pan et al., 2021] develop Adversarial Gradient In-
tegration, which releases the choice of the baseline by inte-
grating the gradients from adversarial examples to the target
input. [Kapishnikov et al., 2021] introduce Guided IG, which

Figure 2: Structure of the hypothesized causal graphs. (a) Un-
observed latent variables Z and sensitive attribute S are two con-
founders that jointly generate the observed data X and the outcome
Y . (b) Add another confounder S′ to generate the counterfactual
example X ′.

aligns the model’s prediction and the input to explicitly re-
duce the noise in resulting attributions with a condition path.

We point out a key issue that the existing choices of the
baseline critically impact attribution quality, leading to unfair
explanations in the debiasing learning scenario. To overcome
this, we develop a new attribution based technique, which in-
tegrates gradients along the counterfactual interpolated path
to achieve a higher explanation quality.

3 Counterfactual Interpolation Augmentation
3.1 Notations
Let X = {xi, yi, si}, i ∈ 1, ..., N be the training set, where
xi is the input, yi denotes the target label, and si represents
the sensitive attribute. For ease of notation, we consider bi-
nary sensitive attributes in the following sections. z is the
latent space feature. x′ and s′ denote the counterfactual sam-
ples of x and s, respectively. We use capital letters to denote
the random variables.

3.2 Counterfactual Causal Inference
Counterfactual fairness [Kusner et al., 2017] requires the
same distribution of predictions for each sample in the fac-
tual world where S = s and in counterfactual world where
S = s′, for all s′ ̸= s ∈ S. It refrains the sensitive attribute
from being the cause of a change in the model prediction.
Definition 1. (Counterfactual Fairness) [Kusner et al.,
2017] A classifier Ŷ is counterfactually fair if under any con-
text X = x and S = s,

p(ŶS←s = y|X = x, S = s)

=p(ŶS←s′ = y|X = x, S = s′),
(2)

for all y and for any value s′ attainable by S.
However, the counterfactual fairness only requires the pre-

dictions to be the same across factual-counterfactual pairs,
regardless of whether those pairs share the same value of the
target y. Following [Pfohl et al., 2019], we further require the
model to be counterfactually fair, conditioning on the factual
target y, formally:

p(ŶS←s = y|X = x, Y = y, S = s)

=p(ŶS←s′ = y|X = x, Y = y, S = s′).
(3)

We seek to address the training data bias problem through
the lens of causal inference motivated by Definition 1 and Eq.



Figure 3: CIA employs a pre-trained CVAE to generate a set of
counterfactual interpolations (x̂1, x̂2, · · · , x̂n) of x conditioned on
interpolated sensitive attributes s̃ and y, where s′ contrasts with s.

3. However, it is hard to identify the causal mechanisms from
limited observational data that may be sampled from a single
biased training distribution. It would be a natural decision
to help identify the counterfactual causal mechanisms with
additional hand-designed counterfactual examples.

Figure 2(a) illustrates the causal graph, modeling the gen-
erative process of the original biased dataset X , in which z
is drawn from an isotropic Gaussian prior: z ∼ p(Z) =
N (0, I), s is drawn form a multinomial distribution with
marginals π: s ∼ p(S) = Categorical(S|π), and x
and y are drawn independently given s and z: x, y =
p(X|Z, S)p(Y |Z, S). The data bias problem is caused by
the distribution of sensitive attribute p(S), e.g., s is randomly
drawn from a multinomial distribution. We model the coun-
terfactual causal inference to generate counterfactual interpo-
lation augmentations illustrated in Figure 2(b). A counter-
factual generative process is x′, y = p(X ′|Z, S′)p(Y |Z, S′),
and here S′ is a new confounding variable in contrast with S.

3.3 Generating Counterfactual Interpolations
It is generally impossible to infer the causal structure of the
underlying data generating process directly from the observ-
able properties. Therefore, we employ a generative model to
capture the causal structure in the presence of an unobserved
confounder with observable proxies [Madras et al., 2019].

We first pre-train a generative model (e.g., CVAE) in which
the encoder and decoder inputs are conditioned on the sen-
sitive attribute and target variable. Concretely, the encoder
learns qϕ(z|x, y, s), which is equivalent to learning latent fea-
ture z of data x with condition s and y. The decoder learns
pθ(x|z, y, s) decoding the latent feature z with condition s
and y to input space. The generative model is trained to min-
imize the following objective function:

LCVAE(θ, ϕ) =− Eqϕ(z|x,y,s) log pθ(x|z, y, s)
+ KL(qϕ(z|x, y, s)||pθ(z)).

(4)

The first term denotes a reconstruction loss encouraging the
encoder to map the observed data (x, y, s) into latent feature
z and the decoder to reconstruct x from (z, y, s). The sec-
ond term indicates a regularization making the distribution
qϕ(z|x, y, s) similar to a prior Gaussian distribution p(z) by
Kullback–Leibler (KL) divergence

CVAE can generate non-existent manipulated samples as
interpolations for real samples along any arbitrary axis. We

design an interpolated path moving linearly along the sensi-
tive attribute s as:

s̃ = (1− δ) · s+ δ · s′, δ ∈ [0, 1], (5)

and inject s̃ into the decoder of the pre-trained CVAE as
shown in Figure 3. We generate a set of counterfactual inter-
polations (x̂1, x̂2, · · · , x̂n) transiting from the factual example
x to its counterfactual example x′ along the interpolated path
defined in Eq. 5. The variation of δ determines the number of
generated interpolations. This interpolated process is appli-
cable regardless of a single sensitive attribute (e.g., color in
BiasedMNIST dataset) or multiple sensitive attributes (e.g.,
gender and age in CelebA dataset).

4 Training and Interpreting Fair DNN
4.1 Training Fair DNN with CIA
By adding the generated counterfactual interpolations XCIA,
we obtain our augmented training dataset XAUG = X∪XCIA.
A reasonable amount of counterfactual interpolations in XCIA

alleviate the dataset bias caused by the sensitive attribute in
X , thus preventing the model from learning biased represen-
tation. Finally, we train our debiased model Fdebias on XAUG

with the cross-entropy objective:

Lclass = Ex∼XAUG

[
−

∑
c

yc logFdebias(x)

]
, (6)

where c is the index of the classes.

4.2 Counterfactual Gradients Integration
IG sums gradients over gradual modifications from a baseline
to the original input, essentially distributing the total change
in model output across gradual input changes. IG’s perfor-
mance heavily relies on the choice of baseline. An arbitrary
choice could negatively impact the explanatory power and
lead to meaningless explanations. The explanation generated
from IG using a black image baseline without the sensitive
attribution cannot correctly reflect feature importance in the
debiasing learning scenario as illustrated in Figure 1(d).

We propose a gradient-based feature attribution technique,
Counterfactual Gradients Integration (CGI), which leverages
the counterfactual interpolations generated from CIA to arti-
ficially induce a procedure on how the model attention moves
across the gradual changes on the sensitive attribute of the
input while computing the final prediction score. Thus, CGI
can generate explanations regardless of bias while querying a
fair DNN model for gradients.

4.3 Path Integral of CGI
IG pre-defines a straight line as the path integral from the
baseline x′ to the original input x as γ(α) = x′ + α(x− x′),
where α ∈ [0, 1], i.e., γ(0) = x′ and γ(1) = x. The
baseline x′ represents the absence of features. In CGI, we
design the path integral as the interpolated path, transiting
from the counterfactual sample x′ to the input x for gener-
ating counterfactual interpolations in CIA, formally: γ(δ) =
g(x, (1−δ)·s+δ ·s′), where g(·) denotes the pre-trained gen-
erative model and δ ∈ [0, 1]. We formulate CGIi(x) along the



i-th dimension for an input x and its counterfactual example
x′ as:

CGIi(x) = (xi − x′i)

∫ 1

δ=0

∂F (γ(δ))

∂γi(δ)

∂γi(δ)

∂δ
dδ. (7)

CGI is obtained by accumulating the gradients along the inte-
gration path γ(δ) by varying the δ parameter. The model will
encounter interpolations on the sensitive attribute from s′ to
s during the CGI process.

5 Experiments and Results
5.1 Datasets
BiasedMNIST. Following [Arjovsky et al., 2019], we
modify MNIST by introducing color (i.e., red and green)
as the sensitive attribute correlating strongly (but spuriously)
with the target labels in the training set. A fairness-indifferent
DNN model can easily achieve high accuracy by only learn-
ing the superficial properties (colors) instead of the inherent
properties (shapes) for digit recognition. However, such a bi-
ased model can fail at inference time when the spurious cor-
relation between the sensitive attribute and the target shifts or
vanishes, for example, randomly coloring the digits.

CelebA. The CelebA is a multi-attribute dataset for face
recognition with 40 binary attribute annotations for each im-
age. Following [Nam et al., 2020], we select HeavyMakeup
and HairColor as target attributes (y) and Gender as the
sensitive attribute (s). There is a significant spurious cor-
relation between the target and the sensitive attributes (i.e.,
most women have blond hair or wear heavy makeup in this
dataset). [Nam et al., 2020] compiled two test datasets: unbi-
ased, by selecting the same number of images for every pos-
sible value of the pair (y, s), and bias-conflict, by removing
all the samples where y and s have the same values from the
unbiased set.

5.2 Implementation Details
Architecture details. We employ the LeNet-5 and a pre-
trained VGG-16 as the feature extractor along with two fully
connected layers as the classification models for BiasedM-
NIST and CelebA, respectively. The encoder and decoder in
CVAE for BiasedMNIST are multi-layered perceptrons con-
sisting of three hidden layers where the latent feature dimen-
sion is set to be 2. For CelebA, the encoder of CVAE has 4
× Conv2D layers with a 3×3 kernel. The decoder consists
4 × Conv2DTranspose layers with a 3×3 kernel. A batch
normalization layer and Leaky ReLu activation function are
added after the Conv2D and Conv2DTranspose layers. The
latent feature dimension is set to be 128. We add a fourth
channel to each image to encode the sensitive attributes.

Training details. We use Adam optimizer throughout all
the experiments in the paper. All models are trained with a
learning rate of 0.001 and a batch size of 64. We train the clas-
sification models for 5 epochs using the cross-entropy loss.
We train CVAEs for 50 and 20 epochs for BiasedMNIST and
CelebA, respectively, with binary cross-entropy loss as the
reconstruction objective. We generate counterfactual interpo-
lations for the whole training set using the pre-trained CVAE

following our CIA approach for BiasedMNIST. Since Cle-
beA dataset is much larger, with more than 160,000 images in
the training set, we randomly select 10,000 samples from the
training set and generate their counterfactual interpolations.

5.3 Baseline Methods

LAFTR. [Madras et al., 2018] explore adversarial repre-
sentation learning ensuring group fairness (e.g., demographic
parity, equalized odds, and equal opportunity) to different ad-
versarial objectives.

PriorTraining. [Wang et al., 2021] propose a general
framework for learning interpretable fair representations by
introducing an interpretable “prior knowledge” during the
representation learning process. They add an adversarial loss
similar to LAFTR as fairness constraints. Another prior loss
is used to ensure the interpretable feature learning.

Group DRO. [Sagawa et al., 2019] aim to minimize
“worst-case” training loss over a set of pre-defined groups.
The authors expect that models that learn the spurious corre-
lation between sensitive attributes and target variables would
perform poorly on groups for which the correlation does not
hold. By adding a strong regularization on the worst-case
groups, Group DRO can prevent the models from learning
pre-specified spurious correlations.

LfL. [Sagawa et al., 2019] propose a failure-based debias-
ing scheme by training a pair of neural networks simultane-
ously. The first network is trained to be biased by repeatedly
amplifying its “prejudice”. They debias the training of the
second network by focusing on samples that go against the
prejudice of the first network.

5.4 BiasedMNIST Results

We compare our method with the vanilla models (Vanilla,
plain training without any debiasing procedure), LAFTR
[Madras et al., 2018], and PriorTraining [Wang et al., 2021].
We quantitatively assess the effectiveness of different meth-
ods via comparing classification performance on training and
test sets. The results are shown in Table ??. The vanilla model
heavily relies on the spurious correlation between color (sen-
sitive attribute) and digit (target), so it fails to learn the digit
shape during training, resulting in a large accuracy drop on
the test set (79.48 → 18.08). LAFTR and PriorTraining ap-
ply adversarial training to remove sensitive information from
the learned features, which may compromise the model per-
formance on the main classification task. Our CIA debiases
the training set using counterfactual interpolations and con-
sequently achieves the highest training and test accuracies.
The number of generated counterfactual interpolations ben-
efits the performance of CIA, i.e., CIA-30 achieves the best
performance.

We qualitatively compare the explanation performance of
our CGI with two baselines, IG and BlurIG [Xu et al., 2020],
in Figure 4. IG applies a black image as the baseline for gra-
dients integration whereas BlurIG defines the path integral by
successively blurring the original input.



Figure 4: Examples of attribution heatmaps obtained by IG, BlurIG, and CGI. CGI demonstrates to generate higher quality attribution
heatmaps with clearer digits shape, less noise, and focuses more densely on the digits (i.e., more bright masks).

Method Training Acc Test Acc
Vanilla 79.48 18.08
LAFTR 74.14 75.22
PriorTraining 74.62 75.46
CIA-10 79.64 78.16
CIA-20 79.95 78.23
CIA-30 79.97 78.69

Table 1: Fairness evaluation on BiasedMNIST. CIA-10, CIA-20 and
CIA-30 denotes our CIA method with 10, 20 and 30 generated coun-
terfactual interpolations for each sample, respectively. Best perform-
ing results are marked in bold.

5.5 CelebA Results
We compare our method with LfF [Nam et al., 2020] and
Group DRO [Sagawa et al., 2019] with results shown in Table
??. The vanilla model spuriously uses the sensitive attributes
for target variable prediction, leading to low accuracies, es-
pecially on the bias-conflict sets. Notably, there are large ac-
curacy gaps (i.e., unbiased dataset: 69.14 → 85.60 and 61.45
→ 68.39; bias-conflict dataset: 50.26 → 84.17 and 31.56 →
50.16) between the vanilla model and our model demonstrat-
ing the effectiveness of CIA for bias mitigation. Our model
outperforms Group DRO and LfF on most evaluation data
sets. We note that CIA is a pre-processing approach that is
both algorithm- and model-agnostic. As such, it is compat-
ible with many other in-processing and post-processing fair-
ness algorithms. We mainly demonstrate the advantage of
only using CIA coupled with plain training in this work and
leave the combination of CIA with other algorithms as our
future works.

Figure 5 shows a qualitative example demonstrating CGI
is capable of generating higher quality attribution map. Note
that there is substantial noise in IG’s attribution map due to
the arbitrary choice of the baseline. Both CGI and BlurIG
have captured the meaningful facial features (e.g., eyes and
lips) related to the target attribute HeavyMakeup. While
CGI’s attribution map has higher density masks demonstrat-
ing a focus more densely on these facial features.

5.6 Quantitative Performance
We use insertion score and deletion score [Petsiuk et al.,
2018] to quantitatively evaluate the interpretation quality of

Figure 5: Examples of attribution maps obtained by IG, BlurIG, and
CGI. The target attribute is HeavyMakeup.

different attribution methods. An attribution method should
yield a high insertion score while keeping a low deletion
score. We select 1000 samples from BiasedMNIST and 128
samples from CelebA (target variable: Heavymakeup) and
report the quantitative results in Table ??. Our CGI outper-
forms other attribution methods evident by higher insertion
and lower deletion scores.

6 Discussion
6.1 Fair Explanation
Although these explanation methods can generate attributions
to interpret the model predictions, it is still unclear whether
the attributions are generated from the discriminative features
or the sensitive attribute since we do not have the ground truth
attributions available for evaluation [Zhou et al., 2021]. We
illustrate an example from BiasedMNIST in Figure 6 to ex-
amine whether these methods are making fair explanations.
Both IG and CGI can generate high-quality attribution maps
with clear digit shape. While CGI’s attribution map clearly
shows that the attributions are captured from the digit shape
rather than the color. This is because our CGI applies the
counterfactual interpolations for gradients integration, which
counteracts the effect of the sensitive attribute.



Target Acc.Type Vanilla Group DRO LfF CIA-10 CIA-20 CIA-30

HairColor Unbiased 69.14 85.43 84.24 84.95 85.12 85.60
Bias-conflict 50.26 83.40 81.24 83.16 83.69 84.17

HeavyMakeup Unbiased 61.45 64.88 66.20 67.86 68.04 68.39
Bias-conflict 31.56 50.24 45.48 48.07 49.26 50.16

Table 2: Evaluation results on CelebA. Gender is the sensitive attribute. The results of Group DRO and LfF are cited from [Nam et al.,
2020]. We report the average accuracy over all (y, s) pairs.

Method BiasedMNIST CelebA
Deletion↓ Insertion↑ Deletion↓ Insertion↑

IG 0.2080 0.5591 0.1038 0.2514
BlurIG 0.2693 0.5014 0.0638 0.3016
CGI(ours) 0.1649 0.6253 0.0746 0.3264

Table 3: Quantitative results using deletion score and insertion score.

Figure 6: An showcase example demonstrates CGI is capable of
generating fair explanation.

6.2 Investigating Saturation Effects
[Miglani et al., 2020] split the area along the integral path
as the saturated region where the model outputs changes
minimally, and unsaturated region where the model outputs
changes substantially. The gradients from the saturated re-
gion dominate the calculation of IG. Nevertheless, the inte-
grated gradients of the saturated region seem to be noisier and
substantially less faithful than the unsaturated region. There-
fore, it is desirable to have a larger unsaturated region to con-
vey feature importance via gradients integration.

Here, we conduct experiment to investigate the saturation
regions of IG and CGI. Figure 7 clearly shows that our CGI
integrates gradients in a larger unsaturated region than IG
does, which contributes proportionately to the computed at-
tribution leading to better explanations as shown in Figure 4.
This further demonstrates the effectiveness of our CGI ap-
proach in the aspect of gradient saturation effect.

Figure 7: Comparing saturation regions of IG and CGI. We ran-
domly select 10 samples from BiasedMNIST and report the model
predictive probability (y-axis) along α and δ (x-axis) integral path.

7 Conclusion
We propose CIA as a pre-processing method to improve
DNN’s fairness via de-correlating the target variable with
the sensitive attribute in training set. CIA generates coun-
terfactual interpolations from a generative model. We further
develop a gradient-based feature attribution method leverag-
ing the counterfactual interpolations from CIA to generate
high quality and fair explanations. Our experimental results
demonstrate the outstanding performance of our approach
via quantitative and qualitative evaluations using benchmark
datasets. In the future, we will investigate the problem of fair
explanation generation with implicit bias mitigation.
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